Bovis ISSN 2398-2993

Colostrum: overview

Contributor(s): Ash Phipps , Paul Wood

Royal Dick School Veterinary Studies logo

Colostrum

What is Colostrum?

  • Colostrum is defined as the first mammary secretions produced post parturition.
  • Colostrogenesis is the prepartum transfer of immunoglobulins from the maternal circulation into the mammary secretions.
    • This process is regulated by lactogenic hormones, including prolactin and begins several weeks before parturition.
    • This process reaches a peak at 1-3 days before parturition and ceases abruptly immediately prior to parturition.
  • The immunoglobulin concentrations in mammary gland secretions decrease during the transition from colostrum to transition milk and transition milk to milk over the first six milkings post calving.
  • Colostrum contains three major immunoglobulins, IgG, IgM and IgA.
    • IgG accounts for approximately 85-90% of immunoglobulins in colostrum.
      • IgG is derived from maternal serum.
      • Colostrum concentrations of IgG1 are at levels 5-10 times that of serum.
    • IgA accounts for approximately 5-10%.
    • IgM accounts for approximately 5 - 10%.
  • Colostrum not only contains immunoglobulins, but also other constituents which are essential for the passive transfer of immunity, these include:
    • Maternal leukocytes.
    • Fats.
    • Non-colostral proteins.
    • Peptides.
    • Carbohydrates.
    • Vitamins (vitamin A, vitamin E and vitamin B12) Vitamins: overview.
    • Minerals (Calcium Calcium, Magnesium Magnesium, Zinc Zinc, Manganese Manganese, Cobalt Cobalt and Selenium Selenium).
    • Cytokines.
    • Lacotoferrin.
    • Ash.
    • Growth factors.
Print off the farmer factsheets on Colostrum to give to your clients.

The Importance of Colostrum 

  • The syndesmochorial placentation Placenta in the cow forms a syncytium between the maternal endometrium and the fetal trophectoderm, separating the maternal and fetal blood supplies.
  • This type of placentation prevents the transmission of immunoglobulins to the fetus in utero and as a consequence, neonatal calves are born hypo-gammaglobulinemic or agammaglobulinemic.
  • Therefore neonatal calves are dependent on the ingestion and absorption of immunoglobulins, especially IgG, across the intestinal epithelium, provided by the dam’s colostrum.
  • Serum concentrations of IgG of greater than 10mg/ml at 1 to 7 days after birth indicate that adequate passive transfer of immunity has occurred and is associated with a significantly reduced risk of morbidity and mortality in the pre-weaning period.
  • Successful passive transfer has also been recognized to provide many longer term benefits which include:
    • Reduced morbidity and mortality rates post-weaning.
    • Improved feed efficiency.
    • Improved weight gain.
    • Reduced age at first calving.
    • Improved milk production in future lactations.
    • Reduced risk of being culled in the first lactation period.
  • The majority of samples to test passive transfer are taken at between 2 and 5 days.
    • There is evidence that testing calf serum before 48 hours may give artificially low results.

Consequence of inadequate colostrum take

  • The terms used to describe inadequate colostrum intake are ‘failure of passive transfer’ or ‘failure of transfer of immunity’.
  • Serum concentrations of IgG of less than 10mg/ml at 1 to 7 days after birth indicate failure of passive transfer of immunity.
  • The consequences of  failure of passive transfer of immunity include:
    • Short term consequences:
      • Increased losses in the pre-weaning period.
      • Increased veterinary costs associated with the treatment of sick calves.
      • Increased labor costs associated with the treatment of sick calves.
    • Longer term consequences:
      • Increased losses up to six months of age.
      • Increased veterinary cost associated with the treatment of sick calves.
      • Increased labor costs associated with the treatment of sick calves.
      • Increased losses in the post-weaning period.
      • Decreased growth rate.
      • Increased average age at first calving.
      • Reduction in milk production during the early years in the herd.
      • Loss of genetic potential of the herd.

Colostrum Feeding

This article is available in full to registered subscribers

Sign up now to purchase a 30 day trial, or Login

Factors affecting colostrum intake by calves and factors affecting colostrum quality

This article is available in full to registered subscribers

Sign up now to purchase a 30 day trial, or Login

Colostrum Quality

This article is available in full to registered subscribers

Sign up now to purchase a 30 day trial, or Login

Colostrum Handling, Storage and Pasteurization

This article is available in full to registered subscribers

Sign up now to purchase a 30 day trial, or Login

Types of Available Colostrum

This article is available in full to registered subscribers

Sign up now to purchase a 30 day trial, or Login

Further Reading

Publications

Refereed Papers

  • Recent references from PubMed and VetMed Resource.
  • Quigley J D, Lago A, Chapman C, Erickson P & Polo J (2013) Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum. Journal of Dairy Science 96 (2), pp 1148-1155 PubMed.
  • Godden S M, Smolenski D J, Donahue M, Oakes J M et al (2012) Heat-treated colostrum and reduced morbidity in preweaned dairy calves: Results of a randomized trial and examination of mechanisms of effectiveness. Journal of Dairy Science 95 (7), pp 4029-4040 PubMed.
  • Morrill K M, Conrad E, Lago A, Campbell J et al (2012) Nationwide evaluation of quality and composition of colostrum on dairy farms in the United States. Journal of Dairy Science 95 (7), pp 3997-4005 PubMed.
  • Elizondo-Salazar J A & Heinrichs A J (2009) Feeding heat-treated colostrum to neonatal dairy heifers: Effects on growth characteristics and blood parameters. Journal of Dairy Science 92 (7), pp 3265-3273 PubMed.
  • Godden S (2008) Colostrum management for dairy calves. The Veterinary Clinics of North America. Food Animal Practice 24 (1), pp 19 PubMed.
  • Lee S H, Jaekal J, Bae C S, Chung B H et al (2008) Enzyme‐Linked Immunosorbent Assay, Single Radial Immunodiffusion, and Indirect Methods for the Detection of Failure of Transfer of Passive Immunity in Dairy Calves. Journal of Veterinary Internal Medicine 22 (1), pp 212-218 PubMed.
  • Godden S, McMartin S, Feirtag J, Stabel J et al (2006) Heat-treatment of bovine colostrum. II: effects of heating duration on pathogen viability and immunoglobulin G. Journal of Dairy Science 89 (9), pp 3476-3483 PubMed.
  • McMartin S, Godden S, Metzger L, Feirtag J et al (2006) Heat treatment of bovine colostrum. I: Effects of temperature on viscosity and immunoglobulin G level. Journal of Dairy Science 89 (6), pp 2110-2118 PubMed.
  • Chigerwe M, Dawes M E, Tyler J W, Middleton J R et al (2005) Evaluation of a cow-side immunoassay kit for assessing IgG concentration in colostrum. Journal of the American Veterinary Medical Association 227 (1), pp 129-131 PubMed.
  • Faber S N, Faber N E, McCauley T C & Ax R L (2005) Case study: effects of colostrum ingestion on lactational performance. The Professional Animal Scientist 21 (5), pp 420-425.
  • Stewart S, Godden S, Bey R, Rapnicki P et al (2005) Preventing bacterial contamination and proliferation during the harvest, storage, and feeding of fresh bovine colostrum. Journal of Dairy Science 88 (7), pp 2571-2578 PubMed.
  • McGuirk S M & Collins M (2004) Managing the production, storage, and delivery of colostrum. Veterinary Clinics of North America: Food Animal Practice 20 (3), pp 593-603 PubMed.
  • Godden S M, Smith S, Feirtag J M, Green L R et al  (2003) Effect of on-farm commercial batch pasteurization of colostrum on colostrum and serum immunoglobulin concentrations in dairy calves. Journal of Dairy Science 86 (4), pp 1503-1512 PubMed.
  • Arthington J D, Cattell M B, Quigley J D, McCoy G C & Hurley W L (2000) Passive immunoglobin transfer in newborn calves fed colostrum or spray-dried serum protein alone or as a supplement to colostrum of varying quality. Journal of Dairy Science 83 (12), pp 2834-2838.
  • Hammon H M, Zanker I A & Blum J W (2000) Delayed colostrum feeding affects IGF-I and insulin plasma concentrations in neonatal calves. Journal of Dairy Science 83 (1), pp 85-92 PubMed.
  • Weaver D M, Tyler J W, VanMetre D C, Hostetler D E & Barrington G M (2000) Passive transfer of colostral immunoglobulins in calves. Journal of Veterinary Internal Medicine 14 (6), pp 569-577 PubMed.
  • Maunsell F P, Morin D E, Constable P D, Hurley W L & McCoy G C (1999) Use of mammary gland and colostral characteristics for prediction of colostral IgG1 concentration and intramammary infection in Holstein cows. Journal of the American Veterinary Medical Association 214 (12), pp 1817-1823 PubMed.
  • Donovan G A, Dohoo I R, Montgomery D M & Bennett F L (1998) Associations between passive immunity and morbidity and mortality in dairy heifers in Florida, USA. Preventive Veterinary Medicine 34 (1), pp 31-46 PubMed.
  • Quigley J D & Drewry J J (1998) Nutrient and immunity transfer from cow to calf pre-and postcalving. Journal of Dairy Science 81 (10), pp 2779-2790 PubMed.
  • Barrington G M, Besser T E, Davis W C, Gay C C et al (1997) Expression of immunoglobulin G 1 receptors by bovine mammary epithelial cells and mammary leukocytes. Journal of Dairy Science 80 (1), pp 86-93 PubMed.
  • Garry F R, Adams R, Cattell M B, Dinsmore R P (1996) Comparison of passive immunoglobulin transfer to dairy calves fed colostrum or commercially available colostral-supplement products. JAVMA 208, pp 107–10 PubMed.
  • Manoher A A, Williamson M & Kappikar G V (1996) Effects of Storage of Colostrum in Various Containers. Indian Pediatrics 34, pp 293-296 PubMed.
  • Mee J F, O’Farrell K J, Reitsma P & Mehra R (1996) Effect of a whey protein concentrate used as a colostrum substitute or supplement on calf immunity, weight gain, and health. J Dairy Sci 79, pp 886–94.
  • Wells S J, Dargatz D A & Ott S L (1996) Factors associated with mortality to 21 days of life in dairy heifers in the United States. Preventive Veterinary Medicine 29 (1), pp 9-19.
  • Pritchett L C, Gay C C, Hancock D D & Besser T E (1994) Evaluation of the hydrometer for testing immunoglobulin G 1 concentrations in Holstein colostrum. Journal of Dairy Science 77 (6), pp 1761-1767 PubMed.
  • Yancey R J (1993) Recent advances in bovine vaccine technology. Journal of Dairy Science 76 (8), pp 2418-2436 PubMed.
  • Shearer J, Mohammed H O, Brenneman J S & Tran T Q (1992) Factors associated with concentrations of immunoglobulins in colostrum at the first milking post-calving. Preventive Veterinary Medicine 14 (1), pp 143-154.
  • Mechor G D, Gröhn Y T & Van Saun R J (1991) Effect of temperature on colostrometer readings for estimation of immunoglobulin concentration in bovine colostrum. Journal of Dairy Science 74 (11), pp 3940-3943 PubMed.
  • DeNise S K, Robison J D, Stott G H & Armstrong D V (1989) Effects of passive immunity on subsequent production in dairy heifers. Journal of Dairy Science 72 (2), pp 552-554 PubMed.
  • Robison J D, Stott G H & DeNise S K (1988) Effects of passive immunity on growth and survival in the dairy heifer 1, 2. Journal of Dairy Science 71 (5), pp 1283-1287 PubMed.
  • Larson B (1985) The relationship between total protein in serum, glutaraldehyde coagulation test and disease in feedlot calves. Nordisk Veterinaermedicin 37 (2), pp 90.
  • Larson B (1985) The relationship between total protein in serum, glutaraldehyde coagulation test and disease in feedlot calves. Nordisk Veterinaermedicin 37 (2), pp 90.
  • Staley T E & Bush L J (1985) Receptor mechanisms of the neonatal intestine and their relationship to immunoglobulin absorption and disease 1, 2. Journal of Dairy Science 68 (1), pp 184-205.
  • James R E, Polan C E & Cummins K A (1981) Influence of administered indigenous microorganisms on uptake of [Iodine-125] γ-Globulin in vivo by intestinal segments of neonatal calves. Journal of Dairy Science 64 (1), pp 52-61.
  • Fleenor W A & Stott G H (1980) Hydrometer test for estimation of immunoglobulin concentration in bovine colostrum. Journal of Dairy Science 63 (6), pp 973-977 PubMed.
  • Larson B L, Heary H L & Devery J E (1980) Immunoglobulin production and transport by the mammary gland. Journal of Dairy Science 63 (4), pp 665-671 PubMed.
  • Olson D P, Papasian C J & Ritter R C (1980) The effects of cold stress on neonatal calves. II. Absorption of colostral immunoglobulins. Canadian Journal of Comparative Medicine 44 (1), pp 19 PubMed.
  • Stott G H, Marx D B, Menefee B E & Nightengale G T (1979) Colostral immunoglobulin transfer in calves. IV. Effect of suckling. Journal of Dairy Science 62 (12), pp 1908-1913 PubMed.
  • Foley J A & Otterby D E (1978) Availability, storage, treatment, composition, and feeding value of surplus colostrum: A Review 1, 2. Journal of Dairy Science 61 (8), pp 1033-1060.
  • James R E & Polan C E (1978) Effect of orally administered duodenal fluid on serum proteins in neonatal calves. Journal of Dairy Science 61 (10), pp 1444-1449 PubMed.
  • James R E, Polan C E & Zanartu D (1977) Effect of orally administered duodenal fluid on serum gamma globulin levels in neonatal calves. Journal of Dairy Science 60, pp 168.
  • Sasaki M, Davis C L & Larson B L (1976) Production and turnover of IgG1 and IgG2 immunoglobulins in the bovine around parturition. Journal of Dairy Science 59 (12), pp 2046-2055 PubMed.
  • Brandon M R, Watson D L & Lascelles A K (1971) The mechanism of transfer of immuno-globulin into mammary secretion of cows. Australian Journal of Experimental Biology and Medical Science 49 (6), pp 613-623 PubMed.
  • Bush L J, Aguilera M A, Adams G D & Jones E W (1971) Absorption of colostral immnunoglobulins by newborn dairy calves. Journal of Dairy Science 54 (10), pp 1547-1549 PubMed.
  • Selman I E, McEwan A D & Fisher E W (1971) Studies on dairy calves allowed to suckle their dams at fixed times post-partum. Research in Veterinary Science 12, pp 1-6 PubMed.
  • Murphy F A, Aalund O, Osebold J W & Carroll E J (1964) Gamma globulins of bovine lacteal secretions. Archives of Biochemistry and Biophysics 108 (2), pp 230-239 PubMed.
  • Edwards R A (1961) A comparison of the hydrometric and gravimetric methods for the determination of solids-not-fat when applied to the milk of individual cows in a single herd. Journal of Dairy Research 28 (2), pp 109-115.
  • Larson B L (1958) Transfer of specific blood serum proteins to lacteal secretions near parturition. Journal of Dairy Science 41 (8), pp 1033-1044.

Other sources of information

  • Godden S (2015) "No Bugs Please"—How to Feed Clean Colostrum to Baby Calves. [online] Available at: www.extension.umn.edu/.
  • Dairy Australia (2011) Rearing Healthy Calves: How to raise calves that thrive. Dairy Australia Ltd, Level 5, IBM Center, 60 City Road, Southbank, VIC 3006.
  • Godden S & Eastridge M L (2011) Pasteurized milk and colostrum feeding systems: capturing the benefits and avoiding the pitfalls. In: Proceedings of the 20th Annual Tri-State Dairy Nutrition Conference. Grand Wayne Center Fort Wayne, Indiana. pp. 97-110.
  • Lean I & P DeGaris (2010) Transition Cow Management: A review for nutritional professionals, veterinarians and farm advisors. Eds: S. L. a. J. Penry. Dairy Australia. pp 1-56.
  • Parkinson T J, Vermunt J J & Malmo J (2010) Diseases of cattle in Australasia: a comprehensive textbook. VetLearn, Wellington.
  • Godden S M (2009) Microbial hazards associated with feeding colostrum. In: Proceeding of the Southwest Nutrition. Management. Conference. pp. 44-52.
  • Quigley J (2001) Freezing & thawing colostrum [R/OL]. Calf Notes 13.
  • Arthur G, Nokes D & Pearson H (1996) The development of the conceptus: Pregnacy and parturition in veterinary reproduction and obstetrics. 7th Edition. Philadelphia: W.B Saunders.


ADDED